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SUMMARY

Asymmetric spatial implicit high-order schemes are introduced and, based on Fourier analysis, the
dispersion and damping are calculated depending on the asymmetry parameter. The derived schemes
are then applied to a number of inviscid problems. For incompressible convection problems the proposed
asymmetric schemes (applied as upwind schemes) lead to stable and accurate results. To extend the
applicability of the proposed schemes to compressible problems acoustic upwinding is used. In a two-
dimensional compressible �ow example acoustic and conventional upwinding are combined. Evaluation
of all presented results leads to the conclusion that, of the studied schemes, the implicit �fth order
upwinding scheme with an asymmetry parameter of about 0.5 leads to the optimal results. Copyright
? 2005 John Wiley & Sons, Ltd.

KEY WORDS: inviscid; asymmetric; spatial implicit; upwinding; subsonic

1. INTRODUCTION

High speed �ows are important in gasturbines, airplanes, etc. Through the development in
computing facilities direct numerical simulations (DNS) and large eddy simulations (LES) of
these �ows are now accessible. This results in the need for suitable unsteady �ow solvers.
Traditionally, these simulations are performed using spectral methods. However, over the
last decade compact implicit �nite di�erence methods [1] have been successfully developed.
These schemes combine high-order accuracy with spectral-like resolution properties. The orig-
inally proposed implicit schemes were symmetric, i.e. central, di�erences schemes which were
employed to the convective as well as for di�usive contributions of the Navier–Stokes equa-
tions. This meant that they could only be used when the grid-Reynolds number was small
enough. For �ows at larger Reynolds numbers the non-linear convection term transfer energy
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from lower to higher wavenumbers in absence of (or with minor) di�usion this energy will
be stored at the highest wavenumbers. This leads to undamped growth of the Nyquist wave.
In, e.g. Reference [2] asymmetric spatial implicit schemes are proposed to supply high-

wavenumber damping, to secure that the solution remains numerically stable on all represented
wavenumbers. In the present paper the same technique will be explored. It will be shown that
with these asymmetric implicit schemes it is possible to accurately solve �ows even at in�nite
Reynolds numbers. Three di�erent spatial discretization scheme-types are treated: explicit third
(E3), implicit third (I3) and implicit �fth (I5) order schemes. Fourier analysis shows that the
dispersion and damping of the schemes is determined by the degree of asymmetry of the
schemes which is determined by means of an asymmetry parameter.
Two examples of inviscid incompressible �ows are presented. As a �rst step, it is shown

that the asymmetric schemes give good results in the Molenkamp-test. This test involves
linear transport of a passive-scalar. Next, the analysis is extended to a non-linear convection
problem: solving the inviscid Burgers equation. In this problem the solution steepens to a
discontinuity. It will be shown that the proposed asymmetric schemes lead to stable and
accurate results.
In compressible subsonic �ows the non-linear �ow behaviour is contained within the prop-

agation of the characteristic acoustic waves. This means that application of the asymmetric
schemes only to the convective �uxes is insu�cient to damp the high wavenumber modes. For
this reason a new approach was proposed in Reference [3]. In this approach the characteristic
waves are used as the basic �ow phenomenon. The asymmetry is used along the propagation
velocity of these waves. This technique will be introduced as ‘acoustic upwinding’. It will
be shown, by means of a number of examples, that acoustic upwinding leads to accurate
results and that (depending on the choice of the asymmetry parameter) it indeed dampens the
non-representable waves e�ectively. First, a one-dimensional example demonstrates that the
propagation of acoustic waves is accurately predicted. Next, a convection dominated problem
is treated which shows the possibilities of the proposed schemes for mildly compressible �ows.
In the last example acoustic and conventional upwinding are combined in a two-dimensional
problem.

2. SCHEMES

Similar to the introduction of symmetric schemes in Reference [1], we start from an implicit
coupling of the function values on a set of nodes (fi) to a linear combination of the values
of the �rst derivative (f′

i )

�1f′
i−1 + f

′
i + �2f

′
i+1 = b1

fi − fi−2
2h

+ a1
fi − fi−1

h
+ a2

fi+1 − fi
h

+ b2
fi+2 − fi
2h

(1)

In the analysis presented in Reference [1] the values of the left and right coupling constants are
taken symmetrically, i.e. �1 = �2, b2 = b1, etc. Similar to Reference [2], we leave an opening
for non-equal coe�cients. There is of course no limit to the extension to which the stencil
could theoretically be stretched. However, to retain the compactness of the stencil we have
restricted the analysis to schemes which lead to �ve-point coupling. This means that we do
not consider the coupling with nodes i + 3 and i − 3. Furthermore, the implicit coupling is
restricted to three point (tridiagonal) coupling to reduce the computational e�ort necessary.
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To �nd the relations between the coe�cients, the Taylor-series expansions are coupled at
various orders. Matching these equations at the desired error leads to the following constraints:

First order:
a2 + a1 + b2 + b1 = 1 + �2 + �1

Second order:

1
2 (a2 − a1) + b2 − b1 = �2 − �1

Third order:

1
3!
(a2 + a1) +

22

3!
(b2 + b1)=

1
2
(�2 + �1)

Fourth order:

1
4!
(a2 − a1) + 2

3

4!
(b2 − b1)= 1

3!
(�2 − �1)

Fifth order:

1
5!
(a2 + a1) +

24

5!
(b2 + b1)=

1
4!
(�2 + �1)

Sixth order:

1
6!
(a2 − a1) + 2

5

6!
(b2 − b1)= 1

5!
(�2 − �1)

Note that, for any symmetric set of coe�cients, the even order equations are automatically
satis�ed. Therefore, the added degrees of freedom due to the asymmetric schemes also leads to
an added set of constraints (and not to a higher order of the truncation error). The restriction
to the �ve point stencil with tri-diagonal implicit coupling leads to the restriction to �fth (for
asymmetric schemes) and sixth (for symmetric schemes) order. Therefore, in this paper third
and �fth order asymmetric schemes will be compared, similar to Reference [4].

3. SCHEME ANALYSIS

To analyse the schemes we use the spectral analysis proposed in Reference [1]. In this analysis
the function values are decomposed into their Fourier components. Next, a scaled wavenumber
z ≡ 2�k=N and coordinate s ≡ x=h are introduced. The Fourier modes can then be represented
by exp(izs) (with i2 = − 1). The exact �rst derivative becomes a function with coe�cients:
f̂

′
k = izf̂k . The di�erencing error can now be found by solving the modi�ed wavenumber z′

for each z from

iz′=
b1(1− e−2iz)=2 + a1(1− e−iz) + a2(eiz − 1) + b2(e2iz − 1)=2

1 + �1e−iz + �2eiz

Exact di�erentiation corresponds to z′= z. Di�erences in the real part (z′r) of z
′ imply a

dispersion error in the scheme, while the imaginary part (z′i) of z
′ indicates its damping. For

all di�erent schemes that will be derived the results of this analysis are presented in Figure 1.
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Figure 1. The modi�ed real (left: z′r) and imaginary (right: z′i ) wavenumber as function of the imposed
wavenumber (z) for explicit (top), third-(middle) and �fth-order (bottom) schemes as a function of the

asymmetry parameter ratio r ≡ a2=a1.
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A �rst set of schemes can be found when the �’s are taken equal to zero. This means that
the coupling in Equation (1) becomes explicit. The truncation order to which the constraints
can be met is then limited to four. This means b2 = b1 = − 1

6 and a2 = a1 =
2
3 . A truncation

error of the third order leads to an additional degree of freedom in which the asymmetry can
be a free parameter, e.g. by imposing the asymmetry parameter r

r ≡ a2=a1

The e�ect of the asymmetry on the third order explicit schemes can be seen in Figure 1 (top).
Clearly, the dispersion error (right) due to the misrepresentation of the real part of z does
not depend on the wavenumber. However, the asymmetry does induce an imaginary part in
the modi�ed wavenumber. The induced damping starts at z-values of about �=6 (equivalent
to k=N=12).
To reduce the damping and the dispersion error of the fully explicit schemes, we now use

implicit tridiagonal coupling. This means that the �’s can be non-zero. Furthermore, the values
of b1 and b2 are set to zero to retain the order of the scheme. The number of free parameters
is four (a1, a2, �1 and �1). When using symmetric di�erencing the classical fourth order Pade
scheme is retrieved. As before, the introduction of the asymmetry parameter r, reduces the
order of the scheme to third order. The resulting modi�ed wavenumbers z′r (right) and z

′
i (left)

are shown in Figure 1 (middle). It becomes clear that the dispersion error is smaller for r
not equal to one. This shows (similar to the conclusions in Reference [1]) that the truncation
error may not be the best basis to judge the schemes spectral behaviour. With respect to the
dispersion error, asymmetric schemes with r equal to approximately 0.2–0.3 seem to give the
best result. Again, the asymmetry also implies damping. However, as compared to the explicit
schemes, this damping now seems to be more restricted to higher wavenumbers. It starts at
z-values of about �=3 (equivalent to k=N=6).
A next step is to increase the order of the scheme by re-introducing non-zero b-values. This

gives the scheme six free parameters. Obviously, this means that the resulting scheme will
now be sixth order with symmetric parameters. On the other hand, if asymmetry is imposed,
the resulting schemes will have a �fth order truncation error. In Figure 1 (bottom) we show
the spectral behaviour of these schemes. Again, compared to the previous schemes, the results
clearly have improved. The dispersion error shows that the �fth order schemes perform better
than the sixth order scheme. The optimum (minimum dispersion error) appears at r-values
of about 0.4–0.5. In this case the deviation of z′r from z starts at z-values of approximately
2�=3. This goes more or less hand in hand the introduced damping error, which starts at z-
values of approximately �=2 (equivalent to k=N=4). Comparison with the CULD and CUHD
schemes proposed in Reference [5] and used in Reference [3] shows that the spectral be-
haviour of those (penta-diagonal) schemes is similar to that of the �fth order implicit scheme
with r=0:5.
From here on, the di�erent scheme-type will be indicated by a name in which the letter

indicates the type of scheme (E: explicit and I: implicit), the number indicates the order of
the truncation error. The parameters (which depend on r) for each of these schemes are given
in the Appendix. At this point it is useful to note that for r equal to 1

3 the I3-scheme excludes
in�uence of fi+1 since a2 then equals zero. Similarly, for r equal to 5

9 the I5-scheme becomes
independent of fi+2 (b2 then equals zero).
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4. INCOMPRESSIBLE FLOW

To show the e�ect of the proposed schemes they are tested in two model test problems:
the Molenkamp test and the formation of a shock in the inviscid Burgers equation. In these
tests the asymmetry is used as an upwinding scheme. In other words r= rc for positive
velocities and r=1=rc for negative velocities. For the time discretization we use a third order
Runge–Kutta scheme [6].

4.1. Molenkamp test

For a �rst evaluation of the asymmetric implicit upwinding schemes, the two-dimensional
Molenkamp test is used. This is done by transporting a passive tracer in a prescribed �xed-
disc velocity �eld. The deformation of the initial tracer distribution measures the error of the
scheme. The equation to be solved is

@f
@t
= − u(x; y)@f

@x
− v(x; y)@f

@y

with

u(x; y) = 2�y

v(x; y) = −2�x

on the domain

−1¡x 6 1; −1¡y 6 1

The initial distribution (at t=0) is

f(x; y)=0:01−�r2 ; r=
√
(x + 1

2)
2 + y2

with �=32. Note that � is chosen larger than f.e. in Reference [7]. This is done to obtain
a high activity inner�eld, while the boundaries are and remain close to zero. Therefore, the
treatment of the boundary has no in�uence.
For all schemes the boundary discretization is performed using a one-sided implicit scheme

f′
1 + 2f

′
2 =

1
h

(
2f2 − 21

2
f1 +

1
2
f3

)

for the boundary point and the fourth order Pade scheme (I3(r=1)) for the second point.
At t=1 the pro�le has undergone one complete revolution. The exact solution at this time

(fex) equals the initial solution. In Figure 2 the rms of the error (||�f||2) as a function of
the asymmetry parameter r is presented for the three di�erent scheme types. A �rst clear
conclusion is that all (nearly) symmetric schemes (r¿0:8) are unable to solve this problem.
The absence of damping of high wavenumber modes leads to unstable solutions. As might be
expected, the accuracy of the I5 schemes is superior to that of the other two schemes. This
is already true at a fairly low resolution. Obviously, the error for higher resolutions decreases
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Figure 2. 106�f2 (vert. axis) of the Molenkamp test as function of r (hor. axis) for the three di�erent
scheme types on a 33× 33 (left) and a 65× 65 (right) grid.

more rapidly for the I5-scheme. Note that the 33× 33-solution with the I5-scheme is already
more accurate than the 65× 65-solution of the E3-scheme. Comparing the di�erent schemes
for varying r shows that the asymmetric schemes give comparable results for all asymmetry
parameters. However, the best results are obtained with r approximately 0.4–0.6.

4.2. Burgers equation

In this section we study the e�ect of the asymmetry parameter on the results of a one-
dimensional non-linear convection problem. In this case we solve u(x; t) from

@u
@t
= − u@u

@x

which is the Burgers equation for Re=∞. Starting from an initial solution

u(x; 0)= sin(�x)

the solution to this problem is periodic. It is solved the domain

−1¡x 6 1

At t= 1
2 the exact solution on the chosen domain is given by

x(u; t)= u=2 +
a sin(u)
�

as shown in Figure 3. Clearly, any scheme with spectral damping will lead to �uctuations
close to the x= ± 1. At this time more and more energy is transferred to non-represented
wavenumbers, that is, the discontinuity steepens more and more beyond the grid resolution.
However, if the scheme is su�ciently asymmetric, stability of the solution is still maintained.
Moreover, if the asymmetry parameter is chosen appropriately the spectrum will remain com-
parable to that of the exact solution. To compare the di�erent schemes we will use the rms
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Figure 3. The exact sawtooth Burgers solution (u: vertical axis as function of x hor. axis) at t equal to
1
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of the spectral amplitude and the phase di�erence

||�A||2 ≡
√∑

N=2 (A− Aex)2
N=2

||��||2 ≡
√∑

N=2 (�− �ex)2
N=2

where the sum is take over all available wavenumbers.
This is shown in Figure 4 for three di�erent numerical schemes. Here we used N equal to

128 and 1024 timesteps. Surprisingly, Figure 4 shows that the best solution to this particular
problem is found from the I3(r=0)-scheme. The reason for this could be that this particular

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1033–1051



INVISCID FLOW 1041

scheme does not use any downwind information, while it is still third order. For the remainder
it is clear that the I5-schemes produce more or less accurate results for all r-values smaller
than 0.45. At higher r-values the schemes become unstable. A striking feature of the presented
results is that this seems to be true for all considered scheme-types; as soon as r is chosen
larger than 0, the results strongly deteriorate. For the sake of completeness it is worthwhile
to note that none of the symmetric (r=1)-schemes is able to �nd a solution to this problem.

5. COMPRESSIBLE ONE-DIMENSIONAL FLOW

To include compressiblity into the equations the tests are extended to solve �(x; t) and u(x; t)
simultaneously

@�
@t
= − @�u

@x

@u
@t
= − u@u

@x
− 1
�
@p
@x

to complete this set of equations the pressure p needs to be connected to the density �. In
the examples presented here, the entropy will be assumed constant. Therefore, the isentropic
compression relation may be used

p
p∞

=
[
�
�∞

]�

where p∞ and �∞ indicate the pressure and density in the reference state. For this atmospheric
conditions are chosen: �∞=1:2 kg=m3 and T∞=300K. Furthermore, the following properties
to describe the medium (air) are used: Rg=287 J=kgK and �=1:4.

5.1. Acoustic upwinding

The behaviour of the proposed schemes in compressible �ows is explored in the following
problem. At t is zero the pressure p(x; 0) and velocity u(x; 0) are prescribed on the periodic
domain 0¡x 6 1 by

u(x; 0)=0

p(x; 0)=p∞ + �p
tanh(D sin(2�x))

tanh(D)

with �p the amplitude of the wave and the parameter D gives the wave steepness. As long
as the amplitude of the wave is small (such that the speed of sound c can be chosen
approximately constant) the exact solution of this problem will be repetitive. In between
the pressure pro�le will change shape, however, note that the points at which p=p∞ will
not move. Therefore, these initial conditions lead to a stationary wave. Since there is no
physical damping nor dispersion (if c= c∞), the initial solution will be restored after a time
t= kt=c∞ for any positive integer k. This should be true for both the velocity as well as for
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the pressure. In this analysis we will use the solution for kt =1 and use 1024 timesteps and
64 gridpoints. The wave parameters are chosen: D=20 and �p=10−4p∞.
A �rst approach to this problem is the use the asymmetric schemes only as an upwinding

scheme for the non-linear convective term. In Figure 5 (left) an example of the result of these
simulations is shown. In this example the �fth order implicit scheme is used for the convective
term, while the other terms are all discretized using the central sixth order (I5(r=1))-scheme.
Clearly, these simulations lead to highly oscillative solutions. The damping provided by the
asymmetric convective term is not su�cient to prevent these non-physical oscillations to
appear. This means that, if the numerical damping must take care of the occurrence of non-
physical (high-wavenumber) compression waves, the asymmetric schemes should be applied
in a di�erent way.
In this paper we use an approach as proposed in Reference [3]. It starts from reformulat-

ing the compressible �ow equations. For this the Local One-Dimensional Inviscid (LODI)-
relations [8] are used, which are based on the characteristic wave formulation

@�
@t
=

−1
2c2
(L1x +L5x)

@u
@t
=

1
2�c

(L1x − L5x)
(2)

where L1x and L5x are de�ned as

L1x = (u− c)
(
@p
@x

− �c@u
@x

)

L5x = (u+ c)
(
@p
@x
+ �c

@u
@x

)
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Figure 5. The pressure ((p − p∞)=�p) and velocity (u) as function of x (horizontal axis) for kt =1
with upwinding (I5(r=0:5)) applied only to the convective term (left) and with acoustic upwinding

(right). Specially note that: left u× 102 and right u× 105.
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Note that L1x and L5x represent the characteristic waves travelling with the velocities u− c
and u+ c, respectively. Now, we apply a technique which we will call acoustic upwinding,
i.e. the di�erentials in both wave descriptions are discretized using the wave velocity as the
upwind direction.
To see the e�ect of this acoustic upwinding we �rst look at the result in Figure 5 (right). In

this �gure again the I5(r=0:5)-scheme is used, but now applied for acoustic upwinding. Now
it is obvious that the use of the asymmetric schemes in this way leads to the damping of the
numerical oscillations. This leads to a decrease in the velocity �uctuations of a factor 1000.
Furthermore, the structure of the pressure wave remains intact. Indicating that the damping
is restricted to the high-wavenumbers. To show this in more quantitatively the rms of both
variables

||�u||2 ≡ �∞c∞
�p

√∑
N (u(x; 1=c∞)− u(x; 0))2

N

||�p||2 ≡ 1
�p

√∑
N (p(x; 1=c∞)− p(x; 0))2

N

is presented in Figure 6. The results for ||�p||2 show that the rate to which the shape
of the initial pressure distribution is recaptured does depend on the type of scheme. The I5-
schemes are all more accurate than the other two. However, when comparing the I5-schemes at
di�erent r-values it appears that their accuracy is more or less comparable. Only at values of
r above 0.9 the oscillations become large enough to show in the rms. For all other values of r
the main contribution to ||�p||2 is situated at the gridpoints just left and right of x=0:5. For
the asymmetric schemes this is the area where probably the damping has its most important
e�ect. As the scheme becomes more symmetric (has less damping) the dispersive error takes
over and starts to generate high wavenumber oscillations. From the presented ||�u||2 it be-
comes clear that for the implicit I3 and I5-schemes the oscillations can be e�ectively damped.
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Figure 6. The rms of pressure (||�p||2) and velocity (||�u||2) for kt =1 using acoustic upwinding and
I5, I3 and E3-schemes as function of r (horizontal axis).
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Furthermore, it appears that at speci�c r values the dispersive and damping errors more or
less cancel, for the I3 scheme this is true at r ≈ 1

3 for the I5-scheme this point lies at r ≈ 1
2 .

5.2. Acoustic wave propagation

The proposed acoustic upwinding makes use of the �ow equations based on the characteristic
waves. It could, therefore, be very useful to determine the e�ect of the schemes on travelling
acoustic waves. These are found if the following initial solution is imposed:

p(x; 0)=p∞ + �p
tanh(D sin(2�x))

tanh(D)

u(x; 0)=
�p
�c
tanh(D sin(2�x))

tanh(D)

In the exact solution this will give L1x=0, and therefore, lead to an exact solution which only
includes L5x. Thus, at these initial conditions a wave travelling in the positive x-direction at
a speed of c should be found. Note that, in order to be able to predict the exact solution �p
should again be chosen small enough. The wave- (D, �p) and medium-parameters (�, �∞; : : :)
are chosen equal to those in the previous paragraph. Again, the result of the 64-point grid
after t=1=c∞ in 1024 timesteps will be evaluated.
First, the results of the three schemes are shown in terms of ||�p||2 and ||�u||2 in

Figure 7. In these �gures the shape of the rms of p from the previous paragraph can clearly
be recognized. However, in this case (as may be expected) ||�u||2 and ||�p||2 behave sim-
ilarly. When comparing the results of the three schemes at di�erent values of r, it shows
that they perform similarly as long as r is chosen smaller than 0.9 with a minimum error
at r approximately 0.8. In Figure 8 the details of the solutions for di�erent r values of the
I5-scheme are shown. From this, it is clear that at large r values the spurious waves become
dominant. For smaller r values, the di�erences in the errors are merely due to small changes in
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Figure 7. The rms of pressure (||�p||2) and velocity (||�u||2) of the L5x-wave for kt =1 using acoustic
upwinding and I5, I3 and E3-schemes as a function of r (horizontal axis).
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Figure 8. The velocity (u) as function of x (horizontal axis) of the L5x-wave for kt =1
using acoustic upwinding for the I5-scheme at r=0, 0.5 and 1 (left) and for the I5, I3

and E3-schemes at r=0:5 (right).

the overshoot and its damping close to x=0:5. On the other hand, Figure 7 shows that the error
does depend on the type of scheme used. For the E3-scheme the rms values are about a factor
2 larger than the values obtained with the I5-scheme. Details of u(x; 1=c∞) (Figure 8 (right))
show that this may be due to the additional damping of the E3- and I3-schemes as compared
to the I5-scheme. This causes the decrease of the slope and the longer range to which the
damping in�uences the solution around x=0:5. This behaviour can probably be traced back
to the results of the Fourier-analysis. As Figure 1 already showed, the expected extent of the
damping decreases by a factor of about 3 between the E3- and I5-schemes.

5.3. Convection dominated �ow

The examples treated in the previous paragraphs were acoustically (that is pressure
wave) dominated. To show the wider applicability of acoustic upwinding to compressible
�ows a convection dominated problem will now be treated. For this we will now solve
a one-dimensional compressible �ow equivalent of the inviscid Burgers equation problem
as previously described. The governing equations still are the one-dimensional compress-
ible �ow equations (2). These will be solved on the domain 0¡x 6 1 with the initial
condition

u(x; 0) = Mac∞ sin(�x)

p(x; 0) = p∞

where Ma is the �ow Mach number (uref =c∞). For a �=1 medium the solution to this problem
at t equal to 1=(Mac∞) is found to be exactly equal to the incompressible Burgers problem (as
can bee seen in Figure 9). In that �gure the results are presented for Ma=0:01 and Ma=0:1,
both solutions are obtained using Nx=128 and Nt =8192. Clearly, the solution at the lower
Mach number su�ers less from higher wavenumber wiggles. This can be seen more clearly
in the zoomed views, where it is obvious that the Ma=0:01-solution still shows a smooth
behaviour while the Ma=0:1-solution shows very sharp peaks near to x=1. For �ows of
di�erent media (di�erent �) we found that the slope of the pro�le changes proportional to
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Figure 9. The Burgers solution (u as function of x (horizontal axis) on the full domain (top) and a zoom
view (bottom)) at t equal to 0.5 compared to the compressible �ow numerical solutions at 1/(Mac∞)

for Ma equal to 0.01 (left) and 0.1 (right) using r equal to 0.6 (for Nx=128 and Nt =8192).

�1=4. This is probably due to the interaction of the convective and compressible phenomenae,
however, we have not explored this phenomenon in more detail.
Again, Fourier-analysis is used to compare the results obtained with the di�erent schemes. In

this case the rmw of the energy ||�A||2 and phase ||��||2 di�erence are calculated comparing
the exact and numerical solution at t equal to 1=(Mac∞) normalized as

u∗
1d ≡ u

Mac∞

Figure 10 clearly shows that the accuracy of any of the schemes depends on the Mach number.
For example, the low r-I5 schemes are unstable for Ma=0:01, while for Ma=0:1 they give
accurate results. On the other hand, the E3-schemes show the opposite trend: high accuracy
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Figure 10. The rms of the energy (||�A||2: left) and phase (||��||2: right) di�erence of the exact and
numerical solution of u∗

1d for the one-dimensional compressible Burgers problem for Ma equal to 0.01
(top) and 0.1 (bottom) for the three di�erent scheme types as function of r (horizontal axis).

for Ma=0:01 and instability for Ma=0:1. On the average it appears that in both simulations
the I5(0:36 r 6 0:5)- and I3(0:26 r 6 0:4)-schemes give the best performance.

6. TWO-DIMENSIONAL COMPRESSIBLE FLOW

To evaluate the performance of the proposed numerical scheme in more-dimensional �ows,
the one-dimensional strategy (Equation (2)) is extended to two dimensions. The equations to
be solved now are

@�
@t
= − @�u

@x
− @�u
@x

@u
@t
= − u@u

@x
− v @u

@y
− 1
�
@p
@x

@v
@t
= − u@v

@x
− v @v

@y
− 1
�
@p
@y
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Again, we propose to use the characteristic wave formulation of this problem

@�
@t
=

−1
2c2
(L1x +L5x) +

−1
2c2
(L1y +L5y)

@u
@t
=

1
2�c

(L1x − L5x)− v @u
@y

@v
@t
=

1
2�c

(L1y − L5y)− u@v
@x

(3)

where L1y and L5y are de�ned as

L1y = (v− c)
(
@p
@y

− �c @v
@y

)

L5y = (v+ c)
(
@p
@y
+ �c

@v
@y

)

Note that in this case the cross-wind convection terms have to be separately discretized, which
will be done using convective upwinding.

6.1. Acoustic wave

The initial conditions to the two-dimensional wave on the domain 0¡x 6 1, 0¡y 6 1 are

u(x; y; 0)=0

v(x; y; 0)=0

p(x; y; 0)=p∞ + �p
tanh(D sin(2�(x + y)))

tanh(D)

To keep the results of the two-dimensional comparable to the previous results, the parameters
of the wave and the numerics will be kept the same (D=20, �p=10−4, Nx=Ny=64, kt =

√
2,

Nt =1024).
The results of these simulations are analysed using the rms of pressure and velocity vector

length according to

||�u||2 ≡ �∞c∞
�p

√∑
N (u(x; y;

√
2=c∞) + v(x; y;

√
2=c∞))2

N

||�p||2 ≡ 1
�p

√∑
N (p(x; y;

√
2=c∞)− p(x; y; 0))2
N

with N the total number of gridpoints (Nx ×Ny).
In Figure 11 both properties are presented for the three schemetypes as a function of r.

The �rst striking feature is the resemblance of these �gures with the ones found for the one-
dimensional calculations (Figure 6). Clearly, the extension of the problem to two dimensions
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Figure 11. The rms of pressure (||�p||2: left) and velocity (||�u||2: right) of the 2d-acoustic wave for
kt =

√
2 using acoustic upwinding and I5, I3 and E3-schemes as a function of r (horizontal axis).

does not deteriorate the quality of the proposed disretization technique. The solutions found
for the I5(r= 1

2) and I3(r=
1
3)-schemes in terms of ||�u||2 are again superior to the other

solutions. In terms of ||�p||2 all I5-schemes produce the best results.

6.2. Convection dominated �ow

As a last step, the one-dimensional convective analysis will be extended to two-dimensional
�ow. The inviscid compressible equations (3) will be solved on the domain 0¡x 6 1 and
0¡y 6 1 with the initial condition

u(x; y; 0)=Mac∞ sin(�(x + y)) cos(�)

v(x; y; 0)=Mac∞ sin(�(x + y)) sin(�)

p(x; y; 0)=p∞

Note that these initial conditions should lead to the same solution (at an angle � with the
x-axis) as the one-dimensional convective problem. We will evaluate the results of �=�=4.
In this case the solution at t= � (≡ 1=(

√
(0:5)Mac∞)) u(x; 0; �) should be the same as the

one found in the one-dimensional problem. Furthermore, due to symmetry arguments, the
same solution should hold for v(x; 0; �), u(0; y; �) and v(0; y; �). Here, as before, the results
for u(x; 0; �) will be evaluated in terms of ||�A||2 and ||��||2. In this case u will be normali-
zed as

u∗
2d ≡ u

Mac∞
√
2

Figure 12 shows the results of the simulations for Ma=0:1 using Nx=128 and Nt =8192.
For both the amplitude and phase error the implicit schemes clearly show much better results
than the explicit schemes. For the E3-results the phase error beyond r=0:5 explodes, the
amplitude remains intact. It is striking that the amplitude error of the three scheme types
give similar results. Note that these two-dimensional results show a similar behaviour as the
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Figure 12. The rms of the energy (||�A||2: left) and phase di�erence (||��||2: right) of the exact and
numerical solution for the two-dimensional compressible Burgers problem for Ma equal 0.1 for the

three di�erent scheme types as a function of r (horizontal axis).

one-dimensional results in Figure 9. Comparing the di�erent results shows that the best choice
would be either a I3- or a I5-scheme with r-values between 0.5 and 0.7.

7. CONCLUSIONS

Asymmetric spatial implicit high-order schemes have been derived similar to Reference [2].
Based on Fourier analysis it has been shown that these schemes are able to accurately represent
the spectral properties of the derivatives. The dispersion and damping are calculated depending
on the asymmetry parameter r. Clearly, the optimal choice of the scheme depends on the
aspired results. The dispersion results show that the �fth order implicit scheme (I5) produces
its optimal dispersion result at r-values between 0.4 and 0.5.
Next, the derived schemes have been applied to two model problems: the Molenkamp-test

and the formation of a discontinuity (‘shock’) in the Burgers problem. In both cases the
symmetric schemes are not able to solve the problem. For the Molenkamp test r has to be
chosen smaller than 0.6–0.7 (depending a little on the scheme-type), while for the formation
of the discontinuity from non-linear convection r for all schemes needs to be smaller than
0.45.
When extended to compressible problems, conventional upwinding of the convective con-

tribution to the momentum equations proofs to be insu�cient to damp the spurious waves.
For this case a new technique: acoustic upwinding is proposed. Thus applied, the I5(r=0:5)
scheme produces the best results by far in terms of the damping of spurious numerical oscilla-
tions. Two-dimensional tests show the same tendency. In this case acoustic and conventional
upwinding are combined. For this case the I3 and I5 schemes show comparable results with
a slight advantage for the I5 schemes at r-values of about 0.5.
In view of the obtained results the I5-scheme with an asymmetry parameter r of about 0.5

seems to be a promising candidate. It combines the good spectral properties in the Fourier
analyses with a numerical damping su�cient to remove spurious waves that result from the
energy transfer to non-representable wavenumbers. In this way a highly accurate result without
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numerical oscillations can be achieved. These properties lead to satisfactory results in all
presented examples. The next step will be to combine this scheme with the splitted time
stepping technique (proposed in Reference [9]) in the application to practical �ow problems.

APPENDIX A: SCHEME PARAMETERS

The parameters for E3 are

a1 =
4
3

1
1 + r

a2 = ra1

b1 = − 1
6 +

1
4(a2 − a1) b2 = − 1

3 − b1
x1 = 0 x2 = 0

The parameters for I3 are

a1 =
3
2

1
1 + r

a2 = ra1

b1 = 0 b2 = 0

x1 = 1
4 − 1

4 (a2 − a1) x2 = 1
2 − x1

The parameters for I5 are

a1 =
14
9

1
1 + r

a2 = ra1

b1 = 1
18 − 1

8 (a2 − a1) b2 = 1
9 − b1

x1 = 1
3 − 3

8 (a2 − a1) x2 = 2
3 − x1

REFERENCES

1. Lele SK. Compact �nite di�erence schemes with spectral-like resolution. Journal of Computational Physics
1992; 103:16–42.

2. Xiaolin Zhong. High-order �nite-di�erence schemes for numerical simulation of hypersonic boundary layer
transition. Journal of Computational Physics 1998; 144:662–709.

3. Sesterhenn J. A characteristic-type formulation of the Navier–Stokes equations for high order upwind schemes.
Computers and Fluids 2001; 30:37–67.

4. Tolstykh AI, Lipavskii MV. On the performance of methods with third- and �fth-order compact upwind
di�erencing. Journal of Computational Physics 1998; 140:205–232.

5. Adams NA, Shari� K. A high-resolution hybrid compact-ENO scheme for shock–turbulence interaction problems.
Journal of Computational Physics 1996; 127:27–51.

6. Kennedy CA, Carpenter MH, Lewis RM. Low-storage, explicit Runge–Kutta schemes for compressible Navier–
Stokes equations. Applied Numerical Mathematics 2000; 35:177–219.

7. van Haaren MJ, Stoker HC, van den Boogaard AH, Huetink J. The ALE-method with triangular elements: direct
convection of integration point values. International Journal for Numerical Methods in Engineering 2000;
49:697–720.

8. Poinsot TJ, Lele SK. Boundary conditions for direct simulations of compressible viscous �ows. Journal of
Computational Physics 1992; 101:104–129.

9. de Lange HC. Split time-integration for low-Mach number compressible �ows. Communications in Numerical
Methods in Engineering 2004; 20(7):501–509.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1033–1051


